

1 of 3

4

S

c. Build a regular expression for the given FSM in Fig Q3(c).

(07 Marks)

OR

a.	State and prove pumping Lemma theorem for regular language.	(08 Marks)
b.	Prove that regular languages are closed under complement.	(05 Marks)
c.	Write regular expression, regular grammer and FSM for the languages	
	$L = \{ \omega \in \{a, b\}^* : w \text{ ends with pattern aaaa} \}.$	(07 Marks)

Module-3

5	a.	Define Context Free Grammer (CFG). Write CFG for the following languages	
		$L = \{0^m 1^m 2^n : m \ge 1, n \ge 0\}.$	(05 Marks)
	b.	What is ambiguity in a grammar? Eliminate ambiguity from balanced parenthesis	grammar?
			(08 Marks)
	c.	Simplify the grammar by removing productive and unreachable symbols	
		$S \rightarrow AB AC$	
		$A \rightarrow aA b \in D$	
		$B \rightarrow 0A$	
		$C \rightarrow DCa$	(07 Morks)
			(07 Warks)
		OR OR	
6	a.	Define PDA and design PDA to accept the language by final state method.	(07 Marks)
		$L(M) = \{ \omega C \omega^{R} \omega \in (a \bigcup b)^{*} \text{ and } \omega^{R} \text{ is reverse of } \omega \}$	
	b.	Convert the following grammar to CNF	
	Ċ	$S \rightarrow ASB \in$	
		$A \rightarrow a AS a$	
		$B \rightarrow SbS A bb$	(08 Marks)
	c.	Consider the grammar	
		$E \to E + E E * E (E) id$	
		Construct LMD, RMD and parse tree for the string $(1d + 1d * 1d)$.	(05 Marks)
		Module-4	
7	a.	Define Turing Machine (TM). Design a TM for language	

a.	Define Turing Machine (TM). Design a TM for language	
	$L = \{0^n 1^n n \ge 1\}$. Show that the string 0011 is accepted by ID.	(10 Marks)
b.	Explain multiple TM with a neat diagram.	(05 Marks)
c.	Explain any two techniques for TM construction.	(05 Marks)

9

(05 Marks)

(10 Marks)

OR

- Design a TM for the language $L = \{1^n 2^n 3^n | n \ge 1\}$ show that the string 11 22 33 is accepted 8 a. by ID. (12 Marks)
 - Demonstrate the model of Linear Bounded Automata (LBA) with a neat diagram. (08 Marks) b.

Module-5

- Show that A_{DFA} is decidable. (05 Marks) a. Define Post Correspondence Problem (PCP). Does the PCP with two list $x = (b, bab^3, ba)$ b. $y = (b^3, ba, b)$ have a solution. (08 Marks) (07 Marks)
 - c. Explain quantum computation.

OR

- Prove the A_{TM} is undecidable. 10 a.
 - Does the PCP with two list x = (0, 01000, 01) y = (000, 01, 1) have a solution. b. (05 Marks)
 - State and explain Church Turning Thesis in detail. c.

3 of 3